Phosphatidyl serine containing supported lipid bilayers on titania: formation and lipid asymmetry.

Sandra Camarero,^{1,2} Cornelis Lütgebaucks,^{1,3} Rik Matena,¹ Marta Gallego,¹ Ilya Reviakine.^{1,4}

¹ CIC biomaGUNE, Paseo Miramon 182, San Sebastian, 20009, Spain.
² Escuela Técnica Superior de Ingeniería, Bilbao, Spain
³ Current Address: BIOTEC - Biotechnologisches Zentrum, Technical University of Dresden, Tatzberg 47/ 49, 01307 Dresden, Germany
⁴ Dept. of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain.

Bilayers prepared on TiO₂ from phosphatidyl serine (PS)-containing liposomes in the presence of Ca^{2+} are asymmetric with respect to the distribution of this lipid: it is sequestered in the surface-proximal leaflet.^{1,2} As such, they represent an interesting model system for studying cell membranes, which have a similar architecture in terms of the distribution of PS. We will present recent results on the distribution of PS in TiO₂-supported bilayers and discuss the effects of liposome composition and Ca^{2+} concentration on their formation. This latter process exhibits interesting similarities with Ca^{2+} -induced fusion of PS-containing liposomes in solution.

- 1. Rossetti, F. F.; Textor, M.; Reviakine, I., Langmuir 2006, 22, (8), 3467-3473.
- 2. Richter, R. P.; Maury, N.; Brisson, A. R., Langmuir 2005, 21, (1), 299-304.