Molecular Dynamics Simulation Of Mutant Tyrosyl-Trna Synthetase Accociated With Charcot-Marie-Tooth Neuropathy Reveals The Stabilization Of Enzyme Dimer Interface.

O. Savytskyi, R. Nikolaenko, and A. Kornelyuk

Department of Protein Engineering and Bioinformatics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150, Zabolotnogo Street, Kiev, Ukraine.

Aminoacyl-tRNA synthetases are key enzymes of protein biosynthesis which are also implicated in other cellular processes. Charcot-Marie-Tooth disease (CMT) is a group of heterogeneous inherited disorders, that is characterized by degeneration of peripheral nerve fibers.

Identified p34-p35 locus in human chromosome 1, associated with the CMT disease, corresponds to YARS gene , encoding human cytoplasmic tyrosyl-tRNA synthetase. TyrRS is α 2-dimer, 2x59 kDa, that catalyze the aminoacylation of cognate tRNA by L-tyrosine. Currently, two heterozygous missense mutations (G41R and E196K) and one de novo deletion (153-156delVKQV) in human TyrRS were identified in patients with CMT disease.

3D structures of all 3 human TyrRS mutants were constructed in silico. Molecular dynamics simulations were carried out in GROMACS 4.0.2. All computations were carried out on computer clusters of Ukrainian academic grid-infrastructure in the frame of MolDynGrid Virtual Laboratory which was established for interdisciplinary research in computational biology requiring high processing power and immense storage space. MD simulations of all 3 human TyrRS mutants were performed for 10 ns. It was found that H11 a-helix of the G41R mutant reveals the partial melting and helix structure distortion. The stabilization of TyrRS dimer interface was revealed in E196K mutant due to the formation of H-bonds between Lys154 and Leu160 in A-monomer and between Lys496 and Leu502 in B-monomer of enzyme dimer. Due to these interactions the antiparallel b-structure is formed at unstructured region between H9 and H10 a-helices. This novel structure significantly restricts the movements of enzyme dimer interface. Correlated motions between dimerisation interfaces and anticodon binding regions are significantly lower in E196K in comparison to wild-type protein structure.

Conclusion: The effects of CMT-causing mutations in human TyrRS could be understood in terms of long-range structural effects on the dimer interface of enzyme.